Our vision is to rejuvenate modern electronics by developing and enabling a new approach to electronic systems where reconfigurability, scalability, operational flexibility/resilience, power efficiency and cost-effectiveness are combined. 

Below is a list of our current publications helping us work toward our vision. 


clear search
October 2016
Enabling technologies for very large-scale synaptic electronics (book)
Editors: Themis Prodromakis, Alexantrou Serb
In this research topic, we wish to provide an overview of what constitutes state-of-the-art in terms of enabling technologies for very large scale synaptic electronics, with particular stress on innovative nanoelectronic devices and circuit/system design techniques that can facilitate the development of very large scale brain-inspired electronic systems. Specifically we welcome contributions including (but not limited to) advances in the following:

1) Emerging technologies and devices for reproducing the physics and the dynamics of real synapses (i.e. synaptic emulators), ideally on timescale ranges matching the broadness of biological timescales.
2) Emerging technologies and devices for reproducing good approximations of synaptic behavior (i.e. synaptic simulators), ideally on timescales found in biology.
3) Memory structures exhibiting differing degrees of volatility (including a) fully non-volatile over long time ranges -months-, b) fully volatile and c) devices exhibiting more than one degree of volatility at the same time -e.g. featuring a volatile and a non-volatile component-).
4) Electronic architectures that support or ideally actively exploit the characteristics of inherently unreliable devices.
5) Examples of applications or entire domains of applications where such synaptic electronics could prove of great utility.
Our Partners